808 nm InGaAlAs 垂直腔面发射激光器的结构设计

张 艳^{1,2} 宁永强¹ 张金胜^{1,2} 张立森^{1,2} 张建伟^{1,2} 王贞福^{1,2}

刘 迪^{1,2} 秦 莉¹ 刘 云¹ 王立军¹

(¹中国科学院长春光学精密机械与物理研究所激发态重点实验室, 吉林 长春 130033 ²中国科学院研究生院, 北京 100049

摘要 为实现垂直腔面发射半导体激光器(VCSEL)在 808 nm 波长的激射,对 VCSEL 芯片的整体结构进行了设计。基于应变量子阱的能带理论、固体模型理论、克龙尼克-潘纳模型和光学传输矩阵方法,计算了压应变InGaAlAs量子阱的带隙、带阶、量子化子能级以及分布布拉格反射镜(DBR)的反射谱,从而确定了量子阱的组分、厚度以及反射镜的对数。数值模拟的结果表明,阱宽为 6 nm 的 In_{0.14} Ga_{0.74} Al_{0.12} As/Al_{0.3} Ga_{0.7} As 量子阱,在室温下激射波长在 800 nm 左右,其峰值材料增益在工作温度下达到 4000 cm⁻¹;新变层为 20 nm 的 Al_{0.9} Ga_{0.1} As/Al_{0.2} Ga_{0.8} As DBR,出光 p 面为 23 对时反射率为 99.57%,全反射 n 面为 39.5 对时反射率为 99.94%。设计的顶发射VCSEL 结构通过光电集成专业软件(PICS3D)验证,得到室温下的光谱中心波长在 800 nm 处,证实了结构设计的正确性。

关键词 激光器;垂直腔面发射激光器;量子阱;数值模拟;分布布拉格反射镜;808 nm
 中图分类号 TN248.4 文献标识码 A doi: 10.3788/CJL201138.0902007

Structural Design of 808 nm InGaAlAs Vertical-Cavity Surface-Emitting Laser

Zhang Yan^{1,2} Ning Yongqiang¹ Zhang Jinsheng^{1,2} Zhang Lisen^{1,2} Zhang Jianwei^{1,2} Wang Zhenfu^{1,2} Liu Di ^{1,2} Qin Li ¹ Liu Yun¹ Wang Lijun¹

¹ Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chines Academy of Sciences, Changchun, Jilin 130033, China

 $^{\rm 2}\,Graduate$ University of Chinese Academy of Sciences , Beijing 100049 , China

Abstract A vertical-cavity surface-emitting laser (VCSEL) was structurally designed for emitting at 808 nm. Based on a comprehensive model, the composition and width of the compressively strained $In_{1-x-y}Ga_xAl_yAs$ quantum well (QW) was determined. Using transmission matrix method, the spectral reflectance of distributed Bragg reflector (DBR) was plotted, and the pairs of the DBR were ascertained. The numerical simulation showed that the lasing wavelength of the $In_{0.14}Ga_{0.74}Al_{0.12}As/Al_{0.3}Ga_{0.7}As$ QW with the width of 6 nm is near 800 nm at room temperature. At the operating temperature, the material peak gain reaches 4000 cm^{-1} . In addition, the designed $Al_{0.9}Ga_{0.1}As/Al_{0.2}Ga_{0.8}As$ DBR is gradient, and the thickness of the gradient layer is 20 nm. The p-DBR has 23 pairs with a reflectance of 99.57%, and the n-DBR has 39.5 pairs with a reflectance of 99.94%. Furthermore, the central wavelength of the spectrum is just at 800 nm obtained by photonic integrated circuit simulator in 3D (PICS3D) at room temperature, which agrees well with the design.

Key words lasers; vertical-cavity surface-emitting laser; quantum well; numerical simulation; distributed Bragg reflestor; 808 nm

OCIS codes 140.5960; 140.7260; 140.3070; 140.3430; 220.4830

收稿日期: 2011-03-28; 收到修改稿日期: 2011-05-24

基金项目:国家自然科学基金(60636020,60706007,10974012,60876036,90923037,11074247和61006054)资助课题。 作者简介:张 艳(1985—),女,硕士研究生,主要从事半导体光电子器件方面的研究。E-mail: zhangyan.jlu@163.com 导师简介:宁永强(1965—),男,研究员,博士生导师,主要从事新型半导体激光器及其相关物理等方面的研究。 E-mail: ningyq@ciomp.ac.cn(通信联系人)

1引 言

垂直腔面发射半导体激光器(VCSEL)和传统的边发射半导体激光器相比有许多独特的优势,如阈值低、成本小、波长稳定性好、圆形输出光斑、易于二维集成以及不受光学灾变损伤的影响等^[1~4]。这些显著的优点以及它的高速调制特性,使得 VCSEL 广泛应用于光纤通信、光互连、光信息处理和高功率 激光抽运源等各个领域^[5,6]。很多波长的 VCSEL 都被广泛并深入地研究,并且一些 980,850 和 780 nm的器件已经商业化^[7,8]。与此同时,蓝紫外 的 GaN、发红光的 AlGaInP 和 1300~1550 nm 的长 波器件研究正在开展中,并取得了很多可观的成 绩^[8,9]。

808 nm 是半导体激光器中非常重要的一个波 长,其主要用于抽运固体激光器来获得 1064 nm 的 激光,进而用于激光切割、焊接、表面处理及其打标 等工业应用中^[10]。但在广泛的文献调研后,发现关 于 808 nm VCSEL 的研究报道非常少。激射波长 为 808±1 nm 的 VCSEL 在一篇展望中首先被提 出,该器件得到了 25 mW 的输出功率^[11]。另外,激 射波长为 803.3 nm 的单管 VCSEL 被报道,它的输 出功率为 0.3 W^[12]。普林斯顿光电子公司采用去 除 GaAs 衬底的方式制作的 808 nm VCSEL 阵列, 在 125 A 的注入电流下,连续输出功率达到 120 W^[10]。然而这些文献主要是讨论制作工艺和 输出结果,到目前为止,关于 808 nm VCSEL 的整 体结构设计还没有任何报道。

本文采用应变 InGaAlAs 作为 808 nm VCSEL 的量子阱(QW),该材料的带阶高于传统的 AlGaAs 非应变量子阱,因而会起到更好的电子限制作用,并 具有更高的温度稳定性。基于应变量子阱能带理 论、固体模型理论、克龙尼克一潘纳模型和光学传输 矩阵方法,理论计算了压应变 InGaAlAs 量子阱的 带隙、带阶、量子化子能级以及渐变分布布拉格反射 镜(DBR)的反射谱。在此基础上,得到了在特定波 长处的量子阱组分和宽度,以及 DBR 的对数和反射 率,从而给出了 808 nm VCSEL 芯片的整体结构。 设计的 VCSEL 结构通过 PICS3D 权威软件验证, 得到的光谱和量子阱峰值增益波长与理论计算结果 符合得很好,证实了结构设计的正确性。

2 理论分析

在对 808 nm VCSEL 芯片的设计中,采用

In_{1-x-y}Ga_xAl_yAs作为有源区的量子阱,其材料参数除了非应变带隙外,都可以通过相应二元半导体的材料参数^[13]线性插值得到,插值公式为

$$P(In_{1-x-y}Ga_{x}Al_{y}As) = P(InAs)(1-x-y) + P(GaAs)x + P(AlAs)y,$$
(1)

非应变带隙表示为

 $E_{g^0}(x, y) = 0.36 + 2.093y + 0.629x + 0.577y^2 + 0.436x^2 + 1.013xy - 2.0xy(1 - x - y).$ (2)

2.1 应变对量子阱能带的影响

量子阱 InGaAlAs 的晶格常数大于 GaAs 衬底,因此会产生压应变效应。基于应变理论^[13~15], 计算了应变量子阱的体带隙。在(001)方向生长时, 量子阱层平面内的应变以及导带和价带边的漂移值 可表示为

$$\varepsilon = (a_0 - a)/a, \qquad (3)$$

$$\delta E_{\rm c} = 2a_{\rm c}(1 - C_{12}/C_{11})\varepsilon,$$
 (4)

$$\delta E_{\rm hh} = 2a_{\rm v} \left(1 - \frac{C_{12}}{C_{11}} \right) \epsilon + b \left(1 + 2 \frac{C_{12}}{C_{11}} \right), \quad (5)$$

式中 a 和 a₀ 分别为量子阱和衬底的晶格常数, a_e 和 a_v 分别为导带和价带的静压力形变势, b 为切变形 变势, C₁₁ 和 C₁₂ 是弹性应变系数。因此, 量子阱的 应变带隙可以表示为

 $E_{c-hh} = E_{g0}(x,y) + \delta E_c - \delta E_{hh}$, (6) 式中 E_{g0} 可以通过(2)式得到, δE_c 和 δE_{hh} 可以通过 将(3)式分别代入到(4)和(5)式中得到。压应变使 价带重空穴的有效质量变小,在进行应变量子阱中 空穴子能级的计算时其值可以取为

$$m_z = 1/(\gamma_1 - 2\gamma_2), \qquad (7)$$

式中 γ_1 和 γ_2 是价带的Luttinger参数。

2.2 应变量子阱的带阶

带阶是指势 全 和势 阱 材 料 的 带 边 差,在 InGaAlAs 压应变量子阱的带阶计算中,采用固体 模型理论^[13,16],其价带带边和导带带阶比可以表 示为

$$E_{\rm v} = E_{\rm v,av} + \frac{\Delta}{3} + \delta E_{\rm hh}, \qquad (8)$$

$$Q_{\rm c} = \frac{\Delta E_{\rm c}}{\Delta E_{\rm g}} = 1 - \frac{E_{\rm v}^{\rm w} - E_{\rm v}^{\rm b}}{E_{\rm g}^{\rm b} - E_{\rm g}^{\rm w}},\tag{9}$$

式中 $E_{v,av}$ 为价带能量的平均值, Δ 为自旋劈裂带能量, E_v^w 和 E_v^b 为势阱和势垒的价带边, E_g^w 和 E_g^b 为势阱和势垒的应变带隙。

2.3 应变量子阱的临界厚度

对于晶格失配的应变材料系,必须考虑不会产 生失配位错的临界厚度,马修斯等采用力学平衡模 型给出[17]

$$h_{\rm c} = \frac{a \{1 - C_{12} / [4(C_{11} + C_{12})]\}}{\kappa \sqrt{2} \pi \varepsilon [1 + C_{12} / (C_{11} + C_{12})]} \times [\ln(\sqrt{2}h_{\rm c}/a + 1)], \qquad (10)$$

式中 κ 为常数,对于应变超晶格为 1,多量子阱为 2, 单应变层为 4。

2.4 DBR 的特征矩阵

将光学厚度为 1/4 波长,折射率不同的两种材 料重复叠加起来,形成的 DBR 具有较高的反射率。 利用光学特征矩阵方法^[18],可以推导出膜系之间的 关系为

$$\begin{bmatrix} B \\ C \end{bmatrix} = \prod_{j=1}^{k} M_{j} \begin{bmatrix} 1 \\ \eta_{k+1} \end{bmatrix}, \qquad (11)$$

式中 M_i 为第 j 层膜的特征矩阵,对于均匀层可以 表示为

$$\boldsymbol{M}_{j} = \begin{bmatrix} \cos \delta_{j} & \sin \delta_{j} / \eta_{j} \\ i \eta_{j} \sin \delta_{j} & \cos \delta_{j} \end{bmatrix}, \quad (12)$$

式中 η_i 和 δ_i 为第j层膜的光学导纳和相位差,正入射时

$$\delta_j = \frac{2\pi}{\lambda} \Big(n_j + \mathrm{i} \, \frac{\alpha_j \lambda}{4\pi} \Big) d_j \,, \tag{13}$$

式中*n_j*, α_j和*d_j*分别表示第*j*层膜的折射率、吸收系数和物理厚度,λ为光波长。

对于折射率满足指数分布的渐变层,垂直入射

时,特征矩阵表示为

$$\boldsymbol{M}_{\rm G} = \frac{\pi}{2} \boldsymbol{\zeta}_1 \begin{bmatrix} n_2 I/n_1 & -\mathrm{i}B/n_1 \\ \mathrm{i}n_2 Q & -H \end{bmatrix}, \qquad (14)$$

$$\begin{split} I &= J_{1}(\zeta_{2}) Y_{0}(\zeta_{1}) - J_{0}(\zeta_{1}) Y_{1}(\zeta_{2}), \\ Q &= J_{1}(\zeta_{1}) Y_{1}(\zeta_{2}) - J_{1}(\zeta_{2}) Y_{1}(\zeta_{1}), \\ B &= J_{0}(\zeta_{2}) Y_{0}(\zeta_{1}) - J_{0}(\zeta_{1}) Y_{0}(\zeta_{2}), \\ H &= J_{0}(\zeta_{2}) Y_{1}(\zeta_{1}) - J_{1}(\zeta_{1}) Y_{0}(\zeta_{2}), \\ \zeta_{1} &= 4\pi n_{1}/(\lambda a), \zeta_{2} = 4\pi n_{2}/(\lambda a), \\ a &= 2 \ln(n_{2}/n_{1})/D, \end{split}$$

式中 J,Y 为第一类和第二类贝塞尔函数,D 为渐变 层的厚度, n_1 和 n_2 分别为渐变层两边的折射率。

3 理论结果和讨论

有研究者做过理论模拟, InGaAlAs 的应变小 于 0.15%的条件下, 应变越大越好^[19], 但早期的外 延工艺表明, 两种材料的晶格常数失配超过 1%, 衬 底上的外延成核生长就很困难, 经计算发现 In_{0.14} Ga_{(0.86-y})Al_yAs 的应变约为 1%, 基于理论模拟和 实际工艺, 确定 In 组分为 0.14。利用(1)~(10)式, 计算了 InGaAlAs 在不同组分下的有效质量、应变、体 带隙、带阶和有效质量, 表 1 列出了下面计算中需要 应用的理论结果, 其中 Al_{0.3}Ga_{0.7}As 是势垒材料。

表 1 量子阱的理论结果 Table 1 Theoretical results of QW

Material	$m_{ m e}/m_{ m 0}$	$m_{ m v}/m_{ m 0}$	ϵ / $\frac{0}{10}$	$E_{ m g}/{ m eV}$	$\Delta E_{ m c}/{ m eV}$	$\Delta E_{ m v}/{ m eV}$	$h_{ m c}/{ m nm}$
$Al_{0.3}Ga_{0.7}As$	0.0919	0.3667		1.7981			
$In_{^{0.14}}Ga_{^{0.75}}Al_{^{0.11}}As$	0.0700	0.3320	1.006	1.4291	0.20136	0.16764	22.48
$In_{0.14}Ga_{0.74}Al_{0.12}As$	0.0708	0.3330	1.007	1.4433	0.19322	0.16158	22.45
$In_{^{0.14}}Ga_{^{0.73}}Al_{^{0.13}}As$	0.0716	0.3340	1.008	1.4576	0.18503	0.15547	22.42
$In_{^{0.14}}Ga_{^{0.72}}Al_{^{0.14}}As$	0.0725	0.3351	1.009	1.4719	0.17680	0.14940	22.40
$In_{^{0.14}}Ga_{^{0.71}}Al_{^{0.15}}As$	0.0733	0.3361	1.010	1.4863	0.16847	0.14333	22.36

3.1 量子阱子能级

在量子阱结构中,方形势阱中的能级可以用克 龙尼克-潘纳模型来估算^[20],能级分布可以由

$$\cos[k(L_{\rm w}+L_{\rm b})] = \cos(k_{\rm b}L_{\rm b})\cos(k_{\rm w}L_{\rm w}) - \frac{k_{\rm w}^2 + k_{\rm b}^2}{2k_{\rm w}k_{\rm b}}\sin(k_{\rm b}L_{\rm b})\sin(k_{\rm w}L_{\rm w})$$
(15)

求解获得,式中 L_w,L_b 为势阱和势垒的宽度;

 $k_{\rm b} = i \sqrt{2m_{\rm b}(V-E)}/\hbar, k_{\rm w} = \sqrt{2m_{\rm w}E}/\hbar,$ $m_{\rm w}, m_{\rm b}$ 为相应的有效质量;V是导带或者价带的带阶;E是量子化子能级。将计算得到的电子和空穴 有效质量、导带和价带带阶以及材料带隙,代入到 (15)式中便可以得到量子化子能级和阱宽的关系。

图 1 In_{0.14}Ga_{0.74}Al_{0.12}As 压应变量子阱的子能级 Fig. 1 Energy levels of compressively strained In_{0.14}Ga_{0.74}Al_{0.12}As QW

经模拟发现不同组分的 InGaAlAs 量子化子能级图 相差不大,所以这里只列出了具有代表性的一种情况。图1中的电子子能级和空穴子能级分别是从导 带底和价带顶算起的,第一空穴子带是重空穴带。

3.2 激射波长

半导体量子阱激光器通常是 TE 模式激射,主要由导带第一子带电子到价带第一子带空穴的跃迁 决定,这一跃迁的光子能量可以表示为^[21]

$$E = \frac{hc}{\lambda} = E_{\text{c-hh}} + E_{\text{cl}} + E_{\text{hhl}}.$$
 (16)

通过求解(16)式可以确定在特定波长处的量子阱的 组分和宽度,图 2 给出了在不同组分下,InGaAlAs/ Al_{0.3}Ga_{0.7}As量子阱的激射波长和阱宽的关系。由 于 VCSEL 在工作时存在自热效应,有源区温度会 高于室温,激射波长也会因此红移。为了保证 VCSEL 在工作时激射波长在 808 nm 左右,设计的 量子阱有源区在室温下的输出波长应该在 800 nm 左右。另外,考虑材料在 MOCVD 外延生长时的误 差,量子阱的阱宽应该取整数纳米。从图 2可以看 出,满足这两个条件的有 3 种情况:阱宽为 5 nm 的 In_{0.14}Ga_{0.74}Al_{0.12}As, 阱宽为 6 nm 的 In_{0.14}Ga_{0.72} Al_{0.14}As和阱宽为 7 nm 的 In_{0.14}Ga_{0.71}Al_{0.15}As。

3.3 材料增益

材料的光增益定义为单位长度所产生的附加光 子通量与总光子通量之比,光谱增益函数可以表示 为^[21]

$$g(E_{\rm cv}) = \frac{\pi e^2 \hbar}{\varepsilon_0 c^3 m_0^2 n_{\rm av}} \sum_{j,i} (1/E_{\rm cv}) |M_{ji}(E_{\rm cv})|^2 \times \rho_{\rm r,ji} \times \{ f_{\rm e} [E_{\rm cjk} + f_{\rm n}(E_{\rm vjk}) - 1] \}, \qquad (17)$$

式中 $|M_{ji}(E_{ev})|^2$ 是在跃迁能量 E_{ev} 处的跃迁矩阵 元, $\rho_{r,ji}$ 是导带和价带的折合态密度, n_{av} 是材料的折 射率。基于(17)式,利用 PICS3D 软件计算了 InGaAlAs 的材料增益。经过多次模拟,发现阱宽

为 6 nm 的 $In_{0.14} Ga_{0.74} Al_{0.12} As/Al_{0.3} Ga_{0.7} As 量子$ 阱,在室温 300 K 时峰值增益波长在 800 nm 左右如图 3(a)所示。该模拟结果和上述的理论计算结果仅有较小差别,综合理论计算和模拟仿真,最后确 $定势阱材料为 <math>In_{0.14} Ga_{0.74} Al_{0.12} As$, 阱宽为 6 nm。由 于自热效应有源区温度会高于室温 30 K 左右^[22], 图 3(b)给出了该体系在 330 K 时的材料增益,从图 中可以发现,增益峰值波长在该温度下约为 808 nm。从图 3 还可以看到, $In_{0.14} Ga_{0.74} Al_{0.12} As$ 在 330 K 时的材料增益虽然小于 300 K 的情况,但峰 值增益达到 4000 cm⁻¹,高于很多量子阱材料。大 的材料增益会使得器件实现高功率输出,这也是选 择 InGaAlAs 作为 VCSEL 量子阱的重要优势 所在。

Fig. 3 Material gain of $In_{0.14}Ga_{0.74}Al_{0.12}As$ at the temperature of (a) 300 K and (b) 330 K

3.4 DBR 的反射谱和反射率

为了得到最优的输出特性,必须保证 VCSEL 在工作时的 DBR 反射中心波长、腔模波长和增益峰 值波长三者匹配。由于反射中心和腔模波长随温度 的漂移率小于增益峰值,并考虑到三者的漂移率大 小^[22],最终设定 DBR 的反射中心和腔模波长在室 温下为 805 nm。另外,为减小 DBR 的热阻,应将 DBR 设计成渐变型,DBR 的反射率表示为^[18]

$$R = \left(\frac{\eta_0 B - C}{\eta_0 B + C}\right) \left(\frac{\eta_0 B - C}{\eta_0 B + C}\right)^*, \qquad (18)$$

式中 η_0 为入射媒质的光学导纳。将(11)~(14)式 代入到(18) 式中,即可得到渐变 DBR 的反射谱和 反射率。图4给出了23对突变 Al_{0.9}Ga_{0.1}As/Al_{0.2} Ga_{0.8}As DBR 和具有不同厚度渐变层的 DBR 反射 谱。渐变 DBR 每个周期中 Al_{0.9}Ga_{0.1}As 和 Al_{0.2} Ga_{0.8}As 与渐变层的光学厚度之和均为 1/4 波长, 模拟中考虑了色散和吸收的影响。从图中可以发 现,随着渐变层厚度增大,反射带宽在长波方向减 小,峰值反射率减小,但当渐变 DBR 周期较多时,其 峰值反射率相对于突变 DBR 降低得很小。考虑到 热阻和反射峰值两种因素,最后确定渐变层厚度为 20 nm。

图 4 DBR 的反射谱 Fig. 4 Spectral reflectance of DBR

图 5 给出了渐变层为 20 nm 的全反射 n 面和出 光 p 面的 DBR 反射率和对数的关系,模拟中吸收系 数的选择见参考文献[23]。从出光、散热、高输出功 率和最大光电转换效率的 4 个角度考虑^[24],最后确 定全反射 n 面的 DBR 为 39.5 对,反射率为 99.94%;出光 p 面的 DBR 为 23 对,反射率为 99.57%。

图 5 p 面和 n 面 DBR 的反射率 Fig. 5 Reflectance of p-DBR and n-DBR

3.5 VCSEL 的整体结构

在有源区和反射镜设计完成后,给出了 808 nm 顶发射 VCSEL 的整体结构如图 6 所示。图中势阱 材料为 In_{0.14}Ga_{0.74}Al_{0.12}As,阱宽为 6 nm;势垒材料 为 Al_{0.3}Ga_{0.7}As,垒宽为 8 nm;量子阱的个数为 3 个,这样的设计可以得到最低的阈值电流密度。 为了限制载流子的同时并降低串联电阻,量子阱两 侧的空间层采用渐变 Al_xGa_{1-x}As,Al 的组分从 0.3 到 0.6 线性变化,其宽度为 98 nm,满足有源区总腔 长为一个波长。氧化层 Al_{0.98}Ga_{0.02}As 被放置在距 离有源区为 1/4 波长的第一对 p-DBR 中,为了减小 散射损耗,该氧化孔被设计成锥形^[25]。

图 6 808 nm 顶发射 VCSEL 结构图 Fig. 6 Schematic diagram of the 808 nm top-emitting VCSEL

利用 PICS3D 软件对上述结构建立了物理模型, 得到的输出光谱如图 7 所示。从图中可以看出,在室 温下整体结构的光谱中心波长恰好在800 nm 处。

图 7 808 nm 顶发射 VCSEL 的光谱 Fig. 7 Spectrum of the 808 nm top-emitting VCSEL

4 结 论

基于能带理论和光学传输矩阵方法,对激射波 长为 808 nm 的 VCSEL 芯片的整体结构进行了理 论设计,确定了量子阱的组分和宽度,以及渐变型 DBR的对数和反射率。设计的顶发射VCSEL结构 通过 PICS3D 软件模拟后,得到阱宽为 6 nm 的 In_{0.14}Ga_{0.74}Al_{0.12}As/Al_{0.3}Ga_{0.7}As 量子阱,在工作温 度下材料增益的峰值波长在 808 nm 左右,其峰值 增益达到 4000 cm⁻¹,得到的光谱在室温下中心波 长在 800 nm 处,与理论计算结果符合得很好。

参考文献

- 1 W. W. Chow, K. D. Choquette, M. H. Crawford *et al.*. Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers [J]. *IEEE J. Quantum Electron.*, 1997, **33**(10): 1810~1824
- 2 A. Valle, M. Sciamanna, K. Panajotov. Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surfaceemitting lasers under current modulation [J]. *Phys. Rev. E*, 2007, **76**(4): 046206
- 3 Zhang Yan, Ning Yongqiang, Wang Ye *et al.*. High power vertical-cavity surface-emitting laser array with small divergence [J]. *Chinese J. Lasers*, 2010, **37**(9): 2428~2432
 张 岩, 宁永强, 王 烨等. 高功率低发散角垂直腔面发射激光

器阵列[J]. 中国激光, 2010, **37**(9): 2428~2432

- 4 Cui Jinjiang, Ning Yongqiang, Jiang Chenyu et al.. Beam quality of high power vertical-cavity bottom-emitting semiconductor lasers[J]. Chinese J. Lasers, 2011, 38(1): 0102002 崔锦江, 宁永强,姜琛昱等.大功率垂直腔底发射半导体激光器 的光束质量[J]. 中国激光, 2011, 38(1): 0102002
- 5 A. Gatto, A. Boletti, P. Boffi *et al.*. Adjustable-chirp VCSELto-VCSEL injection locking for 10-Gb/s transmission at 1.55 μ m [J]. *Opt. Express*, 2009, **17**(24): 21748~21753
- 6 Z. Wang, Y. Ning, Y. Zhang et al.. High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array[J]. Opt. Express, 2010, 18(23): 23900~23905
- 7 Liang Xuemei, Wang Ye, Qin Li *et al.*. 980 nm vertical cavity surface emitting laser temperature-change output characteristics [J]. *Chinese J. Lasers*, 2010, **37**(1): 87~91 梁雪梅, 王 烨, 秦 莉等. 980 nm 垂直腔面发射激光器的变温输出特性[J]. 中国激光, 2010, **37**(1): 87~91
- 8 K. Iga. Vertical-cavity surface-emitting laser. Its conception and evolution [J]. Jpn. J. Appl. Phys., 2008, 47(1): 1~10
- 9 R. H. Johnson, V. Blasingame, J. A. Tatum *et al.*. Longwavelength VCSELs at Honeywell [C]. SPIE, 2003, 4994, 222~234
- 10 J.-F. Seurin, G. Xu, V. Khalfin *et al.*. Progress in high-power high-efficiency VCSEL arrays[C]. SPIE, 2009, 7229: 722903
- 11 M. Grabherr, M. Miller, R. Jaeger *et al.*. Commercial VCSELs reach 0.1 W cw output power[C]. SPIE, 2004, 5364: 174~182
- 12 Y.-Q. Hao, Y. Luo, Y. Feng et al.. Large aperture vertical

cavity surface emitting laser with distributed-ring contact[J]. *Appl. Opt.*, 2011, **50**(7): 1034~1037

- 13 J. Minch, S. H. Park, T. Keating *et al.*. Theory and experiment of In_{1-x} Ga_xAs_yP_{1-y} and In_{1-x-y} Ga_xAl_yAs longwavelength strained quantum-well lasers[J]. *IEEE J. Quantum Electron.*, 1999, **35**(5): 771~782
- 14 C. Chihsheng, C. Shunlien. Modeling of strained quantum-well lasers with spin-orbit coupling[J]. IEEE J. Sel. Top. Quantum Electron., 1995, 1(2): 218~229
- 15 P. Zhang, Y. Song, J. Tian *et al.*. Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers[J]. *J. Appl. Phys.*, 2009, **105**(5): 053103
- 16 C. G. Van de Walle. Band lineups and deformation potentials in the model-solid theory[J]. *Phys. Rev. B*, 1989, **39**(3): 1871
- 17 J. W. Matthews, A. E. Blakeslee. Defects in epitaxial multilayers: I. Misfit dislocations[J]. J. Cryst. Growth, 1974, 27: 118~125
- 18 Wang Xiaodong, Wu Xuming, Wang Qing *et al.*. Optical characteristics of DBR with inhomogeneous graded interfaces[J]. Acta Physica Sinica, 2006, 55(10): 4983~4986 王小东,吴旭明,王 青等. 具有非均匀渐变界面 DBR 的光学 特性分析[J]. 物理学报, 2006, 55(10): 4983~4986
- 19 Y.-K. Kuo, J.-R. Chen, M.-Y. Jow et al.. Optimization of oxide-confinement and active layers for high-speed 850-nm VCSELs[C]. SPIE, 2006, 6132: 61320M
- 20 Yan Changling, Qin Li, Ning Yongqiang *et al.*. Calculation of energy band structure of GaInAs/GaAs quantum well[J]. *Laser Journal*, 2004, **25**(5): 29~31
 晏长岭,秦 莉,宁永强等. GaInAs/GaAs 应变量子阱能带结构的计算[J]. 激光杂志, 2004, **25**(5): 29~31
- 21 C.-F. Hsu, P. S. Zory, C.-H. Wu et al.. Coulomb enhancement in InGaAs-GaAs quantum-well lasers[J]. IEEE J. Sel. Top. Quantum Electron., 1997, 3(2): 158~165
- 22 B. Lu, P. Zhou, J. Cheng *et al.*. High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition[J]. *Appl. Phys. Lett.*, 1994, **65**(11): 1337~1339
- 23 S. F. Yu. Analysis and Design of Vertical Cavity Surface Emitting Lasers [M]. Hoboken, N. J.: Wiley-Interscience, 2003. 49~51
- 24 Y. Gye Mo, M. H. MacDougal, V. Pudikov et al.. Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers [J]. IEEE Photon. Technol. Lett., 1995, 7(11): 1228~1230
- 25 E. R. Hegblom, D. I. Babic, B. J. Thibeault *et al.*. Scattering losses from dielectric apertures in vertical-cavity lasers[J]. *IEEE J. Sel. Top. Quantum Electron.*, 1997, 3(2): 379~389